Size and scaling of predator-prey dynamics.

نویسندگان

  • Joshua S Weitz
  • Simon A Levin
چکیده

We propose a scaled version of the Rosenzweig-MacArthur model using both Type I and Type II functional responses that incorporates the size dependence of interaction rates. Our aim is to link the energetic needs of organisms with the dynamics of interacting populations, for which survival is a result of a game-theoretic struggle for existence. We solve the scaled model of predator-prey dynamics and predict population level characteristics such as the scaling of coexistence size ranges and the optimal predator-prey size ratio. For a broad class of such models, the optimal predator-prey size ratio given available prey of a fixed size is constant. We also demonstrate how scaling predictions of prey density differ under resource limitation vs. predator drawdown. Finally, we show how evolution of predator size can destabilize population dynamics, compare scaling of predator-prey cycles to previous work, as well as discuss possible extensions of the model to multispecies communities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of an eco-epidemic model with stage structure for predator

The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...

متن کامل

LIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING

In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...

متن کامل

Prey-Predator System; Having Stable Periodic Orbit

The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.

متن کامل

The Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population

A mathematical model describing the dynamics  of a  delayed  stage structure prey - predator  system  with  prey  refuge  is  considered.  The  existence,  uniqueness  and bounded- ness  of  the  solution  are  discussed.    All  the  feasibl e  equilibrium  points  are determined.  The   stability  analysis  of  them  are  investigated.  By  employ ing  the time delay as the bifurcation parame...

متن کامل

The Lotka-Volterra Predator-Prey Equations

One may find out the application‎ ‎of mathematics in the areas of ecology‎, ‎biology‎, ‎environmental‎ ‎sciences etc‎. ‎Mathematics is particulary used in the problem of‎ ‎predator-prey known as lotka-Volterra predator-prey equations.‎ ‎Indeed‎, ‎differential equations is employed very much in many areas‎ ‎of other sciences‎. ‎However‎, ‎most of natural problems involve some‎ ‎unknown functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology letters

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2006