Size and scaling of predator-prey dynamics.
نویسندگان
چکیده
We propose a scaled version of the Rosenzweig-MacArthur model using both Type I and Type II functional responses that incorporates the size dependence of interaction rates. Our aim is to link the energetic needs of organisms with the dynamics of interacting populations, for which survival is a result of a game-theoretic struggle for existence. We solve the scaled model of predator-prey dynamics and predict population level characteristics such as the scaling of coexistence size ranges and the optimal predator-prey size ratio. For a broad class of such models, the optimal predator-prey size ratio given available prey of a fixed size is constant. We also demonstrate how scaling predictions of prey density differ under resource limitation vs. predator drawdown. Finally, we show how evolution of predator size can destabilize population dynamics, compare scaling of predator-prey cycles to previous work, as well as discuss possible extensions of the model to multispecies communities.
منابع مشابه
Dynamics of an eco-epidemic model with stage structure for predator
The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...
متن کاملLIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING
In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...
متن کاملPrey-Predator System; Having Stable Periodic Orbit
The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملThe Lotka-Volterra Predator-Prey Equations
One may find out the application of mathematics in the areas of ecology, biology, environmental sciences etc. Mathematics is particulary used in the problem of predator-prey known as lotka-Volterra predator-prey equations. Indeed, differential equations is employed very much in many areas of other sciences. However, most of natural problems involve some unknown functions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology letters
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2006